
Allergy Prediction 
Using Artificial 

Intelligence
Client Lead: Joseph Trembley

Team Lead: Noah Ross
Minute Taker: Ella Godfrey

Research Lead: Xerxes Tarman
Quality Assurance Lead: Alex Ong

Client: Ashraf Gaffar

Advisors: Ashraf Gaffar, Ashfaq Khokhar



Project Vision
● The project aims to predict allergic reactions to medicines using machine learning, 

and optimizing testing with a rapid response time
● This benefits both healthcare providers and patients by offering faster and more 

efficient allergy assessments
● This will also contribute to cost reduction by eliminating the need for extensive 

testing procedures. The non-invasive nature reduces the need for additional patient 
information further improving patient experience.



Conceptual/Visual Sketch
● Intuitive and user-friendly web-based application
● Possible Users

○ Healthcare professionals
○ Medical practitioners
○ Individuals seeking rapid and efficient allergy 

assessments

● Integrates advanced machine learning to predict allergic 
reactions
○  Rapid response time
○ Minimizes invasive testing 
○ Offers a cost-effective and user friendly solution



Requirements
Model Requirements:

● Accurately predicts whether a patient would have an allergic reaction to a medicine
● Able to process large number of input variables effectively

UI Requirements:

● Clear display of prediction and confidence level
● Location for user to upload information to test the model
● Visually appealing design
● Web accessibility from anywhere

Legal Requirements:

● Data collection and storage does not violate any health privacy laws



Requirements
Backend Requirements:

● Seamless data transfer from frontend to model
● Limited read/write access for database security
● Return accurate results to the frontend

Testing Requirements:

● Test model for overall accuracy percentage
● Implement logs for fault detection and error tracking

Data Requirements:

● Store data in a secure database
● Database security measures to prevent outside access



System Design Overview
● Server-Side: Data processing, validation, storing data, and 

running the ML model.
● Client-Side: Entering user data, calling REST API, displaying 

prediction results.



System Design UI
● Stored on S3

○ Object storage service
○ Good for static objects

● Built using React
○ Faster than HTML
○ Better responsiveness

● Only direct point of contact for user
● Displays submission form and prediction



System Design Cloud Functions
● Stored in Lambda

○ Quick, on-demand functions
○ Smaller functions = more cost-effective

● Written using Python
○ Same language as model
○ Fewer lines for operations

● Call through REST API
● Validates user data
● Reads and writes to database



System Design Model
● SageMaker

○ Web-hosted ML training
○ Export models for future reference

● Keras API
○ Python ML library
○ Contains trainable models

● Triggered Via Lambda Function
● Predicts allergic reaction



Prototype Implementation - Front-End
● Implemented using React.js

● Communicates with AWS endpoint 

● Additional & finalized input parameters in future 
iterations



Prototype Implementation - Backend
● Simple request/response
● Does concept work?
● JavaScript instead of Python



Design Complexity
● Frontend

○ React-based user interface
○ Ensuring a seamless user-friendly experience
○ Implementing an effective mechanism for data upload
○ Designing a visually intuitive user interface

● Backend
○ Complex cloud function
○ Implementing secure data transfer
○ Managing the complexity of forwarding model results to the frontend
○ Ensuring robustness in cloud functions

● Machine Learning Model
○ Neural networking for allergy prediction
○ Training a model with neural networking to establish connections between various allergy-related factors
○ Overcoming challenges associated with accuracy in machine learning models
○ Building a robust testing suite to prevent overfitting



Project Plan - Tasks
● Predict allergic reactions

○ Develop a machine learning model using Keras to predict allergic reactions to medicines
○ Train and test the model with the given data to ensure accuracy

● Support large input sets
○ Ensure the system can efficiently process a variety of input variables
○ We will use AWS to handle large input sets

● Data training and testing
○ Iterate on training to achieve desired accuracy

● Application interface
○ Develop frontend in React and backend with Lambda cloud functions 

● Logging Implementation
○ Implement logging mechanisms for error, info, and success at all levels as well as facilitate troubleshooting

● Continuous Testing
○ Test the application at every stage of development and address potential issues early in the development process



Project Plan - Mitigation Strategy
Risks:
● Inaccurate model: 

○ Could arise from lack of common links between 
variables or insufficient training 

● Connectivity issues: 
○ Difficulty in communication between frontend, 

backend, and model
● Data uploading issues:

○ Tricky formatting for user-provided data
● Error handling/logs:

○ Lack of logging and descriptive error messages
● Code structure/format: 

○ Unclear file structure impacting model functionality

Mitigations:

● Compare AI models to others for benchmarking
● Test frontend, backend, and model individually and 

together
● Use common formats (.csv) to be accessible
● Handle logs in each separate component
● List conventions in README and enforce simple and 

clear coding structures with consistent formatting



Project Plan - Milestones
● Data Milestones: 

○ Determine appropriate prediction for dataset ( Classification, Clustering, Regression, Ranking)
○  Establish data collection mechanisms ( mysql and python) 
○ Quality of data is established (null/invalid values < 5% of data)
○ Data has large number of input variables (number of features >= 20)

● Model milestones:
○ Model is created (accuracy > 50%), refined ( > 80%), and finished ( > 90%)
○ Rapid Response (total request time < 5 seconds)
○ UI easy to use (< 5 clicks to submit)



Unit Tests
● AI Model: 

○ Test the model for accuracy
○ Split Data Set, one part for training, one part for testing
○ CI/CD pipeline ensure tests run automatically
○ Baseline Model for reference point

● Frontend Component
○ Test buttons and text input fields using React Testing Library
○ Jest to run the tests and confirm if they fail or succeed 



Model Testing
● Our planned method for model testing and regression will be k-fold cross-validation.
● Jupyter Notebook (Hosted on AWS)
● Useful for picking an initial ML method



Interface Tests
Frontend Tools:

● React Testing Library - virtual DOM for the tests to run in
● Jest - test individual components

Backend Tools:

● Python Unit Test - Python testing library



Acceptance Tests
Traceability 

● Alignment between design requirements and testing phases
● Map each requirement to a set of tests

Client Involvement

● Have the client participate in testing the project
● Evaluate if the software performs as expected from the client
● Feedback from client such as deviations from requirements



Conclusion and current progress:
End of Planning:

● We settled on AWS for our first design
● Tested individual AWS services to understand project format

Moving Forwards:

● Create model using real data
● Expand and alter testing components


